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tifold. We study a general class of discrete deformations of the resulting four-dimensional

supergravity theory, including gaugings arising from geometric and “nongeometric” fluxes,

as well as the usual R-R and NS-NS fluxes. Solving the equations of motion associated with

the resulting N = 1 superpotential, we find infinite families of supersymmetric vacua with

all moduli stabilized. These solutions have parametrically small string coupling and moduli

masses, although we expect that a complete string realization of these models would suffer

from large α′ corrections. We also describe some aspects of the distribution of generic solu-

tions to the SUSY equations of motion for this model, and note in particular the existence

of an apparently infinite number of solutions in a finite range of the parameter space of the

four-dimensional effective theory.
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1. Introduction

Classifying the full space of string theory vacua is an enormous problem. For any given

string theory, there is a broad range of possible compactification geometries. Imposing su-

persymmetry simplifies the problem somewhat, and for many years attention was focused

on Calabi-Yau manifolds as the primary structure needed for supersymmetric compactifi-

cation of string theory. In recent years, however, more and more attention has focused on

compactifications including fluxes of various p-form fields on topologically nontrivial cycles

of the compactification manifold [1 – 3]. This has led to the realization that a broader class

of manifolds are needed even for supersymmetric compactifications [4, 5]. It is possible,

however, that concrete realizations of compactifications explored to date only scratch the

surface of the full range of possibilities. In general, supersymmetric compactification on a

Calabi-Yau or other related manifold with fluxes leads to a gauged supergravity theory in

four dimensions. In many gauged supergravity theories, the parameters associated with the

gauging of the supergravity can be identified in this way with fluxes on a compactification

manifold or with certain features of the geometry of the compactification manifold [6 – 8].
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In other cases, however, it is not known how to interpret the gauging parameters in ten di-

mensions. It is possible that in some cases such gaugings are the result of compactifications

on nongeometric string backgrounds [9, 10]. Thus, while many interesting four-dimensional

solutions, including stable de Sitter vacua [11], may be realized in effective four-dimensional

supergravity theories, we often do not know how to interpret these solutions in terms of

ten-dimensional string theory.

When two ten-dimensional theories are related through a duality symmetry, such as

T-duality or mirror symmetry, we have a situation where a given four-dimensional effective

theory may be derived in two different ways. In this case, gauging parameters which have a

natural interpretation as fluxes in one picture may not have a known interpretation in the

dual picture. The existence of one picture in which these gauging parameters can be under-

stood in ten dimensions, however, suggests that these parameters should be allowed to take

nonzero values in a more general context, and that it may be possible to turn on arbitrary

combinations of these parameters even when there is no single picture in which they all have

a known interpretation. This observation has motivated analysis of the duality transfor-

mation properties of the gauging parameters in four-dimensional supergravity theories [12].

In [9], we considered a simple example of this situation, namely, a toroidal orientifold in

Type II string theory. We derived the four-dimensional superpotential for this toroidal

orientifold, including NS-NS and R-R fluxes in both the IIA and IIB theories. These fluxes

give rise to different subsets of the set of possible gaugings of the four-dimensional model.

We argued that to have a class of models which are invariant under duality, it was natural

to include a full duality-invariant set of gauging parameters. When we consider T-duality

transformations on the toroidal orientifold, the duality-invariant set of gauging parameters

includes integers which appear as T-duals of NS-NS 3-form flux H. These integers can be

interpreted as parameterizing twists on the torus, often called “geometric flux” (as can be

found after one T-duality using the Buscher rules [13]) and as generalized fluxes (after two

or three T-dualities).1

These generalized fluxes can be referred to as “nongeometric,” in the sense that when

they are present in the absence of other fluxes, they describe backgrounds with no global

(or possibly even local) geometric interpretation. There is so far no complete worldsheet

description of spaces with these fluxes as string backgrounds, but one proposal for a stringy

construction of these fluxes has been described by Hull [14] and explored by several au-

thors at both the classical [15 – 17] and quantum [18] levels. While simple combinations of

geometric and generalized fluxes may have a string interpretation along these lines, when

sufficiently complicated combinations of fluxes are included, we have as yet no concrete idea

of how to lift the resulting four-dimensional physics to a full string compactification. While

we touch on this issue here, for the most part we simply treat the fluxes as parameters in

the four-dimensional effective theory. Other approaches to the worldsheet description of

nongeometric backgrounds include asymmetric orbifolds [19, 20], and a recent generaliza-

tion [21]. We do not expect, however, that the backgrounds described in the present work

1Here the word “generalized” is not used in the sense of “generalized geometry” [5]. We use it instead

to describe essentially topological structures which are related to p-form flux under duality.
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generically have an asymmetric orbifold description.

In this paper we consider the four-dimensional theory with this general set of fluxes and

solve the tree-level supergravity equations. We find classes of vacua in which the string

coupling g and cosmological constant Λ are parametrically controlled. These vacua are

reminiscent of the parametrically controlled IIA vacua described in [22], although in that

case there was an explicit picture of the vacua as ten-dimensional compactifications on a

large radius Calabi-Yau manifold. Here, we do not have a ten-dimensional picture of how

these vacua should be interpreted, and likely have no control over α′ corrections. Indeed,

the structure of the fluxes suggests that to construct a complete lift of these solutions to

a string compactification may require the introduction of additional light fields. Because

the fluxes capture some essentially topological features of the theory, however, we believe

that the existence of these SUSY vacua points to some new class of either geometric or

nongeometric string vacua which we may understand more clearly in due course. While

the detailed properties of true string theory solutions related to the four-dimensional vacua

we exhibit here are likely not to be robust under the inclusion of further stringy effects,

broad features such as (for example) the existence of an infinite numbers of solutions may

persist. Furthermore, we find that if we neglect α′ corrections it is possible to control

those parameters which are accessible from our knowledge of the 4D supergravity theory

alone — namely the value of the string coupling constant, the cosmological constant, and

the masses of the fields retained in the 4d theory. Solutions where these quantities are

controllably small are promising starting points for a future string theoretic realization of

these vacua.

In addition to constructing infinite families of vacua for the 4D effective theory, we will

also study the broad features of the general supersymmetric solutions in this model. The

generic solutions stabilize all moduli at tree level, and are not equivalent to known purely

geometric compactifications in any duality frame. We find that our toroidal model possesses

an apparently infinite number of (tree-level) solutions in finite ranges of parameter space.

This somewhat surprising result seems to contradict recent predictions regarding properties

of the string landscape [23, 24], though as we will discuss there are some reasons why the

solutions we find may not correspond to stable nonperturbative vacua in a complete string

theory framework.

In section 2 we review the construction of the superpotential for the dimensionally

reduced four-dimensional theory on the toroidal orientifold, including generalized fluxes.

We give a suggestive new concise description of the constraints on consistent generalized

fluxes in terms of a generalized derivative operator. In section 3 we give the equations of

motion and briefly discuss some simple classes of solutions. In section 4 we describe two

two-parameter families of SUSY vacua, and in section 5 we briefly describe the statistics

of more general vacua. section 6 contains some concluding remarks.

2. Review and preview

2.1 Generalized fluxes

In [9] we identified a set of NS-NS “fluxes” on the torus, which can individually be obtained
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from the usual three-form H-flux by T-duality. T-duality acts on the integrated NS-NS

fluxes according to the chain

H̄abc
Ta←→ fa

bc

Tb←→ Qab
c

Tc←→ Rabc. (2.1)

Here H̄abc is the integer number of units of H-flux on the (abc)-cycle of the torus. The

“geometric flux” fa
bc characterizes the field strengths of a basis of one-forms ηa satisfying

dηa = fa
bc ηb ∧ ηc. (2.2)

Differentiating (2.2) yields a Jacobi identity, and thus the fa
bc may be viewed as the structure

constants for a Lie algebra. The one-forms ηa can be related to both the generators of the

isometry group of the compactification manifold and to a basis for its frame bundle. When

the Lie algebra defined by the fa
bc is nilpotent, the ηa can be constructed explicitly, and

the geometric flux can be straightforwardly interpreted as adding twists to an underlying

torus. When the algebra is not nilpotent, then the compact space is less closely related to

the torus, and from the four-dimensional point of view the lift to ten dimensions is more

subtle [7]; we will return to this point below.

Following the T-duality chain of equation (2.1), acting on fa
bc with an additional T-

duality in the direction b takes us to the nongeometric structure characterized by Qab
c .2

For a torus with N units of such a Q-flux, and no other NS-NS fluxes, fields are periodic

only up to an identification which mixes geometric data with the (integrated) B-field,

and R-R p-forms of differing degree with each other. While the resulting compactification

has a geometric description locally, the transition functions render the global description

nongeometric.

Finally, the last step in the T-duality chain is a formal T-duality on c, taking us

to an object Rabc. This is the NS-NS analogue of the R-R T-duality rule which takes

F̄x
Tx←→ F0. A compactification with R-flux has apparently no geometric description, even

locally. A heuristic argument for this lack of local geometry goes as follows: Consider a

T 3 with nonzero H flux. It is not possible to wrap a D3-brane on this T 3 for the simple

reason that turning on H-flux would give a nonzero Bianchi identity for the gauge field

living on the D3-brane, dF2 = H3 6= 0. T-dualizing this configuration once would give a

D2-brane on a twisted torus. However, the 2-cycle the D2-brane should wrap no longer

exists in the integer homology of the twisted torus. Thus, like the original D3-brane, this

D2-brane can not exist. If these branes cannot exist, neither can the D0-brane one would

get by performing two more T-dualities. This indicates an apparent lack of the notion of

spacetime points on a T 3 with R-flux. It is in this sense that we say that the R-flux gives

a background which is not even locally geometric. A further discussion of the properties

of branes in backgrounds with nongeometric fluxes appears in [17].

We need some understanding of how to combine these generalized flux objects in a con-

sistent manner. These new structures introduce new terms in the NS-NS Bianchi identities

2Strictly speaking, the isometry in the direction b is not globally defined, but it seems that the T-duality

in this direction can be understood, at least in the dimensionally reduced theory, in terms of an orbifold by

a combination of a shift and a T-duality symmetry; see also [16].
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and the R-R tadpoles/Bianchi identities. The need to satisfy Bianchi identities and tadpole

cancellation conditions constrains the admissible fluxes in a general compactification. For

the R-R fluxes, the constraints found in [9] can be written concisely as

(H̄ ∧ +f · +Q · +Rx)F̄ = 0. (2.3)

Here F̄ is the formal sum of the integrated R-R field strengths, and we have used the

notation

Rxω(p) ≡ Rabcωabca4...ap
(2.4)

in addition to

f · ω(p) = fa
[bcω|a|a2...ap], Q · ω(p) = Qab

[c ω|ab|a3...ap], (2.5)

contracting all upper indices and antisymmetrizing all uncontracted lower indices. This

is the natural action of a mixed tensor on a p-form. Recalling that the standard R-R

tadpoles/Bianchi identities can be written in terms of an H-twisted differential operator,

(d + H∧)F ≡ dHF = 0, (2.6)

the constraints (2.3) have a suggestive interpretation as the action of an operator defined

by acting with all generalized NS-NS fluxes,3

D ≡ H ∧ +f · +Q · +Rx (2.7)

on the R-R fluxes F̄ ,

DF̄ = 0. (2.8)

Moreover, just as the usual Bianchi identity for H,

dH = 0, (2.9)

can be understood as the condition that the twisted differential dH ≡ d+H∧ be nilpotent,

the entire set of NS-NS constraints, including the contributions from all generalized fluxes,

are equivalent to a nilpotency condition

D2 = (H ∧ +f · +Q · +Rx)2 = 0. (2.10)

In addition to the (bilinear) generalized Bianchi identities for the NS-NS fluxes, (2.10) also

incorporates the (linear) “tracelessness” conditions fa
ab = 0 = Qab

a .

Now that we have rewritten the constraints in a more covariant form as (2.3), (2.10),

we have eliminated the explicit dependence on a particular choice of coordinate system.

3In (2.3), there is no term corresponding to the derivative operator d; this is because we have integrated

the differential expression to obtain a topological formula. The contraction with f contains the information

coming from d when the forms are expressed in terms of the invariant basis ηa on, for example, a twisted

torus. We expect that some generalization of these formulas should hold without integration, in which case

there should be additional local contributions from d, though it is not clear what this should mean when

the compactification space is not a manifold.
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This provides a natural point of departure for considering these nongeometric structures

on manifolds more complicated than the torus, though we do not pursue this further here.

While any individual nongeometric flux is T-dual to H-flux and has a reasonably

straightforward interpretation as discussed above, a general combination of geometric and

nongeometric fluxes can never be brought to a description in terms of conventional fluxes

in any duality frame, and may be more difficult to interpret. Furthermore, when multiple

fluxes are combined, the nature of the compactification manifold may change dramatically.

For example, including “geometric fluxes” fa
bc which give rise to an algebra which is not

nilpotent gives rise to a space in which the fluxes no longer have the same interpretation

as geometric twists. A simple example of this is compactification on S3, which produces

f ’s which are the structure constants of SU(2) [7]. Performing a T-duality on the fiber

of the Hopf fibration of S3 effectively performs a T-duality on one of the indices of the

f ’s and gives a space which can be described geometrically as S1 × S2 with one unit of

H flux [25]. By formally raising and lowering the indices on the f ’s, however, we see that

this compactification should be described by fluxes which we would label as one H and

two Q’s.4 While this background is not a solution of the equations of motion and is not

supersymmetric, it suggests that when the algebra is not nilpotent, the question of lifting

the background to ten dimensions becomes more subtle, and that we should be cautious in

our assumptions about which backgrounds are geometric and which are not.

To be clear, in this paper we will consider a four-dimensional effective theory with a

specific form for the superpotential. Each individual term in the superpotential has a clear

interpretation in terms of some individual (generalized) flux on an underlying torus, in the

absence of other fluxes. However, for the explicit solutions we find, the gauge algebra of

the resulting theory is not nilpotent, and thus the lift of these solutions to ten dimensions

is not straightforward. While the individual fluxes appearing in our superpotential may

have nongeometric interpretations, we cannot rule out the possibility that there may be

a completely geometric description of these vacua in ten dimensions. For simplicity, we

will continue to use the language of flux compactification on a torus, but the reader should

bear these caveats in mind.

2.2 A simple model: the symmetric T 6/Z2 orientifold

In this paper we will carry out the study of generalized flux compactifications on the simple

symmetric torus orientifold (T 2)3/Z2 which we initiated in [9]. As in [9], the underlying

compactification we consider is type II on a T 6 orientifold where the complex structure is

restricted to be diagonal and symmetric by choosing fluxes which are invariant under cyclic

permutations of the three 2-tori. Thus, the complex structure parameters are proportional

to the identity matrix, τij = τδij . We will consider this orientifold in two T-dual descrip-

tions, namely as a IIB compactification with O3-planes and as a IIA compactification with

O6-planes. This model has three complex moduli: τ , which is the complex structure pa-

rameter of the torus in IIB and the Kähler modulus in IIA; S, the axiodilaton; and U ,

which is the Kähler modulus in IIB and the complex structure modulus in IIA.

4We would like to thank David Marks for pointing out this example to us.

– 6 –



J
H
E
P
0
2
(
2
0
0
7
)
0
9
5

Allowing all generalized fluxes which are consistent with the symmetric restriction

yields a polynomial superpotential for the four-dimensional theory:

W = a0 − 3a1τ + 3a2τ
2 − a3τ

3 (2.11)

+S(−b0 + 3b1τ − 3b2τ
2 + b3τ

3)

+3U(c0 + (2c1 − c̃1)τ − (2c2 − c̃2)τ
2 − c3τ

3)

≡ P1(τ) + SP2(τ) + UP3(τ).

The integer coefficients ai, bi, ci correspond to the number of units of integrated fluxes

on cycles of the torus.5 The ai come from R-R fluxes in both IIA and IIB. The bi in

IIB come from H-flux on various cycles of the torus, while in IIA they are given by (in

ascending order) H, f,Q,R. The ci in IIB are all due to Q-flux, and in IIA are again given

by (in ascending order) H, f,Q,R. For further details, we refer the reader to [9]. In our

conventions, the tree-level Kähler potential is given by

K = −3 ln(−i(τ − τ̄)) − ln(−i(S − S̄)) − 3 ln(−i(U − Ū)) . (2.12)

Equations (2.11) and (2.12) determine the scalar potential, which has the usual form

V = eK

(

∑

i,j∈{τ,U,S}

KijDiWDjW − 3|W |2

)

. (2.13)

The R-R tadpole constraints (2.3) applied to this model yield the restrictions on the

integer coefficients

a0b3 − 3a1b2 + 3a2b1 − a3b0 = 16 (2.14)

and

a0c3 + a1(2c2 − c̃2) − a2(2c1 − c̃1) − a3c0 = 0. (2.15)

The nonvanishing right hand side of (2.14) is the contribution from the orientifold planes.

The NS-NS Bianchi identities and tadpoles, in this model, give a set of constraints relating

the bi and the ci:

c0b2 − c̃1b1 + c1b1 − c2b0 = 0 (2.16)

c1b3 − c2b2 + c̃2b2 − c3b1 = 0 (2.17)

c0b3 − c̃1b2 + c1b2 − c2b1 = 0 (2.18)

c1b2 − c2b1 + c̃2b1 − c3b0 = 0, (2.19)

as well as a set of constraints among the ci:

c0c̃2 − c2
1 + c̃1c1 − c2c0 = 0 (2.20)

c3c̃1 − c2
2 + c̃2c2 − c1c3 = 0 (2.21)

c3c0 − c2c1 = 0. (2.22)

5The flux integer c1 is in the notation of [9] c1 ≡ ĉ1 = č1, and likewise for c2. We will use the notation

ci to refer to all coefficients in P3(τ ).
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Of the seven NS-NS constraints (2.16)–(2.22), four are independent. Including the R-R

constraints (2.14)–(2.15) then gives six independent constraints, reducing the number of

independent flux integers from fourteen to eight.

Finally, in order to avoid additional subtleties, we impose the further restriction that all

flux coefficients should be even. This restriction is motivated by the observation that even

numbers of flux quanta on an orientifolded manifold lift to integer quanta on the original

manifold, while odd numbers of flux quanta require a more sophisticated construction

incorporating exotic orientifold planes [26]. For simplicity, we will thus consider only even

numbers of flux quanta for all of the generalized fluxes we consider here. For any individual

nongeometric NS-NS flux, this restriction to even integers only can be understood as the T-

dual description of requiring the number of units of H-flux to be even. While this argument

from T-duality is insufficient to fully describe a general combination of NS-NS generalized

fluxes, where the new fluxes can never be T-dualized completely to H-flux, it is a strong

motivation to consider only even flux coefficients.

3. Equations of motion

Let us now discuss solutions to the tree level equations of motion in the effective theory

defined by the superpotential (2.11) and the Kähler potential (2.12). The scalar potential

comes entirely from F -terms, as in this model the remaining fields are not charged under the

gauge group, and there is therefore no D-term contribution. Thus, to find supersymmetric

solutions, it suffices to solve the F -flat conditions DαW = ∂αW + (∂αK)W = 0.

In Subsection 3.1 we summarize the equations we are interested in solving. In 3.2 we

describe some simple special cases of solutions. In 3.3 we discuss the criteria for validity of

solutions.

3.1 Equations

The equations of motion we are interested in solving are the F -flat conditions

P1(τ) + S̄P2(τ) + UP3(τ) = 0 (3.1)

P1(τ) + SP2(τ) +

(

2

3
U +

1

3
Ū

)

P3(τ) = 0 (3.2)

(τ − τ̄)∂τW − 3W = 0 . (3.3)

Using equations (3.1) and (3.2), one finds that physical solutions must satisfy

Im (P2P̄3) = 0. (3.4)

One may readily solve for U and S as functions of τ , leaving (3.4) and a twelfth-order (real)

polynomial equation for the real and imaginary parts of τ coming from (3.3). Thus, we

must simultaneously solve this twelfth-order polynomial and a (real) fifth-order polynomial

from (3.4), which in general must be done numerically. Once we have a solution τ0, S0, U0,

we can read off the string coupling,

g =
1

Im S0
, (3.5)
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and the cosmological constant

Λ = V (τ0, S0, U0) = −3eK(τ0,S0,U0)|W (τ0, S0, U0)|
2. (3.6)

We consider physical solutions to equations (3.1)–(3.3) to be only those with positive

values for the imaginary parts of all moduli. In the absence of fluxes, this requirement

is straightforward to interpret, as the imaginary parts of the moduli control the string

coupling and geometric information about the internal manifold, and must be strictly

greater than zero. We assume that this positivity requirement continues to hold in the

presence of arbitrary combinations of generalized fluxes, as turning on fluxes simply turns

on new couplings in the scalar sector of the four-dimensional theory.

Relatedly, the real (axionic) parts of the moduli are in our conventions periodic with

unit period. This periodicity is easily derived in the underlying toroidal compactification

in the language of either IIA or IIB. The addition of fluxes, conventional and nongeometric,

again only adds couplings between the scalar fields and does not affect the range in which

they take values.

Our interest here is to systematically study the solutions to the equations of mo-

tion (3.1)–(3.3) for general choices of the integer coefficients ai, bi, ci in (2.11). Not all

choices of flux integers admit a physical supersymmetric solution. The choices of flux inte-

gers that do yield physical solutions generically fix all moduli and are generically not gauge

equivalent to any vacua which have a conventional geometric interpretation in either type

IIA or IIB. We will discuss two particularly well-behaved families of such vacua in section

4, and describe the general solutions in section 5.

In order to understand the solution space of this model, we must understand how to

avoid multiply counting solutions which are related by the modular group of the compacti-

fication. In our simple torus model, the non-compact portion of the modular group is given

by the integral shift symmetries of the three axionic scalar fields. The shift τ → τ + n

combines with the inversion τ → −1/τ to give a factor of SL(2, Z). The S-duality transfor-

mation S → −1/S, which would combine with the shifts S → S +m to give another factor

of SL(2, Z), maps generalized NS-NS fluxes to additional nongeometric structures which

mix the metric with R-R fields [9, 27]. As S-duality therefore takes us out of the class of

compactifications we consider here, it is not a factor in the modular group and we will not

study it further here. The same is true about the inversion transformation U → −1/U .

Each of these transformations of the moduli is accompanied by a corresponding transfor-

mation of the fluxes to leave the equations of motion invariant. We give the explicit form

of all of these transformations in appendix A. These transformations descend from large

gauge transformations, and therefore configurations related by these transformations are

physically equivalent. In addition, there is a Z2 factor in the modular group which flips

the signs of all fluxes, taking W → −W ; this transformation does not produce a physically

distinct vacuum and as such is also a gauge transformation.

In addition to the modular group discussed above, there are a number of additional

transformations relating vacua which, despite having identical spectra, are physically in-

equivalent. First, there is a sign flip taking τ, S, U → −τ̄ ,−S̄,−Ū , with an accompanying

transformation on the fluxes leaving the equations of motion invariant. Additionally, one
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may shift the axions by rational numbers, e.g. U → U + 1/n or S → S + 1/n, which is

possible whenever the resulting fluxes are still even integers. Both the sign flip and the

fractional shift transformations relate vacua with physically distinct expectation values for

the axions but identical spectra of particle masses, coupling constant, and cosmological

constant. Thus, we have relations between different four-dimensional theories since the

transformations act on the couplings as well as the fields. One can therefore think of the-

ories related by these transformations as being part of a discrete moduli space of a larger

theory.

3.2 Some special cases

There are several classes of possible flux configurations which are of special interest: fluxes

which have an interpretation as a geometric IIB compactification, fluxes which have an

interpretation as a geometric IIA compactification, and fluxes yielding solutions which

have a vanishing expectation value for the superpotential, giving a Minkowski vacuum at

tree level. Each of these subclasses of flux integers seems to be a set of measure zero with

respect to the full set of possible flux configurations admitting physical solutions. We will

discuss these cases in this section, and treat more general cases in the remainder of the

paper.

3.2.1 Geometric IIB vacua

If one takes all the ci to vanish, then the resulting compactification is simply a standard

IIB flux compactification on the torus, and the superpotential (2.11) reduces to the well-

known Gukov-Vafa-Witten superpotential [2]. The resulting vacua on the torus have been

studied in [28 – 30]. As is well-known, these fluxes are not sufficient to stabilize all moduli

at tree level. While in principle these configurations would appear as a subset of the

compactifications we consider here, our main interest in this paper is in vacua with all

moduli stabilized, so we will not discuss geometric IIB vacua further here. In particular,

these vacua will not be included in the sets of vacua studied in section 5.

3.2.2 Geometric IIA vacua

If the fluxes b2, b3 and c2, c̃2, c3 all vanish, then all the remaining terms in the superpotential

have a geometric interpretation in IIA; such toroidal compactifications with geometric flux

have been studied in [15, 31 – 34]. On the symmetric torus, however, there is an additional

interplay between the equations of motion and the constraints which drastically limits the

kinds of supersymmetric vacua one may obtain in this way.

Since for a geometric solution in IIA, P2 and P3 are linear, equation (3.4) for τ reduces

to

(Im τ)(3b1c0 + b0(2c1 − c̃1)) = 0. (3.7)

Requiring Im τ > 0 then yields a constraint on the fluxes

3b1c0 + b0(2c1 − c̃1) = 0. (3.8)
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Consider, however, the tadpole constraints for this set of fluxes:

3a2b1 − a3b0 = 16 (3.9)

a2(2c1 − c̃1) + a3c0 = 0 (3.10)

(c1 − c̃1)b1 = 0 (3.11)

c1(c1 − c̃1) = 0. (3.12)

Let us suppose first that neither b1 nor (2c1 − c̃1) is zero. Then using (3.8), we can trade

the ci in (3.10) for bi to find

3a2b1 − a3b0 = 0, (3.13)

which is, of course, inconsistent with (3.9).

The only way to avoid this inconsistency is to take either b1 or (2c1− c̃1) to be 0. Then

the constraints enforce c1 = c̃1 = c0 = 0, for both b1 = 0 and b1 6= 0. In either case, this is

simply an alternate description of a conventional IIB compactification.

If one chooses to cancel the tadpole from the orientifold planes using D-branes instead

of fluxes, then one may set the right hand side of (3.9) to zero. The constraints then allow

for a wider range of possible solutions, including those with no geometric interpretation

in IIB. We will limit our analysis here, however, to the tadpole as given in (3.9), without

D-branes.

3.2.3 Vacua with W = 0

From the equations of motion, one may show that vacua where the superpotential vanishes

at the minimum are obtained only when

P1(τ0) = P2(τ0) = P3(τ0) = 0, (3.14)

where τ0 is the value of τ which solves the F -flat equations. It is then clear, as we need

Im τ > 0, that a necessary condition for a W = 0 solution is that the polynomials Pi

all share a common quadratic factor, P , which vanishes at τ0. The remaining nontrivial

equations of motion then fix two of the four remaining degrees of freedom. While Minkowski

vacua are very interesting, again, we are focusing our attention on vacua with all moduli

stabilized, and therefore will not examine W = 0 solutions further. For a novel approach

to this class of solutions, see [35].

3.3 Validity of solutions

We are interested in supersymmetric solutions of the four-dimensional effective theory

defined by the superpotential (2.11) and the Kähler potential (2.12). In order for these

solutions to be at all trustworthy, we need to have a small value for the string coupling

g, given through (3.5). Otherwise, nonperturbative string effects may radically change the

structure of the low-energy theory. As we will describe in detail in the following section, we

have found families of solutions with parametrically small coupling g. To have a completely

controllable solution it is also necessary to show that α′ corrections are suppressed. This

is possible in geometric compactifications when the size of the compactification manifold
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can be tuned to be arbitrarily large, suppressing α′ corrections. Unfortunately, in the

models we construct here, it seems very difficult to attain control over α′ corrections when

nongeometric fluxes are incorporated. A full string construction of these models is probably

necessary to address this question.

We can, however, address the issue of control somewhat further from the 4D point

of view. The next critical question in effective field theory calculations in a typical flux

compactification is whether the moduli are stabilized at masses light enough to render the

computation reliable when perturbative string effects are included – that is, whether the

effective field theory describes effects at energy scales which are controllably smaller than

the energy scales of higher Kaluza-Klein modes, winding modes, and excited string modes.

The analogous question for a compactification incorporating nongeometric twists is more

subtle as in the absence of a well-defined critical sigma model we do not know precisely

how to estimate the mass scales of the string modes (in general the distinction between

Kaluza-Klein and other inherently stringy modes such as winding modes will break down).

Given some such concrete stringy solution, we might hope in principle to find a rough

estimate of the scale of the string modes to compare with the masses of the modes retained

in the four-dimensional effective theory.

We have found sets of supersymmetric solutions to the effective field theory which have

tunably small string coupling, cosmological constant, and masses for the moduli, as we will

detail in the following section. These solutions have some very interesting properties. As

the string coupling can be made arbitrarily small, they are well in the perturbative regime.

The mass scales computed in the effective theory can also be made parametrically small,

although, again, we do not have a reliable method of computing the scale of the effective

UV cutoff in our models for comparison. Here we take, as a zeroth-order estimate, the

scale of heavier modes to be set by those scales which, in the absence of flux, would set

the masses of momentum and winding modes on the torus. The mass scales in our families

of solutions can indeed be made parametrically lighter than this estimate for the cutoff.

Our solutions do contain non-nilpotent algebras, however, (as do [32, 33]) and thus are in

the class of vacua which seem most difficult to lift to ten dimensions. By analogy with

the geometric cases discussed in [7], we might be concerned that our näıve method of

estimating the cutoff scale, based on an underlying torus geometry, may be inaccurate,

so that some of the moduli masses may be comparable to the cutoff scale. In this case,

our vacua would need to be augmented with other modes with comparable masses to the

fields already included in the effective four-dimensional theory in order to construct a full-

blown string model. Furthermore, as mentioned above, we do not have any reason to

believe α′ corrections are controlled in these vacua. On the other hand, the existence of

supersymmetric vacua with parametrically controlled string coupling, moduli masses, and

cosmological constant suggests strongly that these vacua can be lifted in some way to string

theory.

4. Families of nongeometric vacua

In this section we discuss two particularly interesting infinite families of solutions to the
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equations of motion presented in the previous section. These infinite families precisely

saturate the tadpole (which as discussed in section 2 is equal to 16) without the inclusion

of additional D-brane sources.

The fluxes which lead to our interesting infinite families of solutions are all modular

equivalent to fluxes having

P2(τ) = b(τ − 1)3 (4.1)

for some integer b, i.e. all the bi are equal. This form for the bi imposes restrictive constraints

on the ci. If in addition c3 = 0, there are only two possible choices for the remaining

ci which satisfy the constraints (2.16)–(2.22). These two options are, in the notation

(c0, (c1, c̃1), (c2, c̃2), c3),

either (2(n + m), (−2m, 2n), (0, 2m), 0) (4.2)

or (2(n + m), (0, 2m), (2n, 2n), 0). (4.3)

Each of these choices for the ci leads to an interesting set of physical solutions, as we will

see. Given these choices for the bi and the ci, one must then choose ai which satisfy the

RR constraints (2.14)–(2.15). A particularly simple way to solve the RR constraints is to

take a0 = 16/b, with the remaining ai = 0. Since a0 and b must be (even) integers, the

only possible choices for b are 2, 4, and 8. There are other choices one may make for the ai;

we merely choose this one for simplicity and because we can exactly solve for the moduli.

The first family of solutions we consider is (4.2), with the ai chosen as in the previous

paragraph. Using the notation (a0, a1, a2, a3), (b0, b1, b2, b3), (c0, (c1, c̃1), (c2, c̃2), c3), the

fluxes here are

(16/b, 0, 0, 0), (b, b, b, b), (2(n + m), (−2m, 2n), (0, 2m), 0). (4.4)

These fluxes yield physical solutions for the moduli

τ0 =

(

n + m

m

)

±
( n

m

)

i, (4.5)

S0 =
m3

b2n3
(−8 ± 2i) , (4.6)

U0 =
m

bn2
(4 ± 2i). (4.7)

The ± in the imaginary parts should be picked to make the imaginary parts positive, i.e. +

when m/n > 0 and − when m/n < 0. The same sign must be picked in all three moduli to

ensure a solution to the equations of motion. This family of solutions has string coupling

g =

∣

∣

∣

∣

b2n3

2m3

∣

∣

∣

∣

(4.8)

and cosmological constant

Λ = −

∣

∣

∣

∣

3b3n6

16m3

∣

∣

∣

∣

. (4.9)

This family is thus easy to tune to small string coupling and cosmological constant by

fixing n and taking m to be large. Notice that it is impossible to tune both g and Λ to
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be finite; there must be an accumulation point for one or both quantities at either zero or

infinity in any infinite set.

Meanwhile, the fields τ, S, U have a mass matrix given by

Mij =





















±21b3n4

16m
0 0 3b5n8

32m5 0 −3b4n7

32m3

0 ±33b3n4

16m
−3b5n8

16m5 0 0 0

0 −3b5n8

16m5 ± b7n12

32m9 0 ±3b6n11

64m7 0
3b5n8

32m5 0 0 ± b7n12

32m9 0 ±3b6n11

32m7

0 0 ±3b6n11

64m7 0 ±3b5n10

32m5 0
−3b4n7

32m3 0 0 ±3b6n11

32m7 0 ±3b5n10

16m5





















, (4.10)

in the basis {Re τ, Im τ,Re S, Im S,Re U, Im U}. The choices of sign ± in the matrix ele-

ments are determined by the choices of sign in the moduli, (4.5)–(4.7). The eigenvalues of

Mij come in pairs, scaling as m−1, m−5, and m−9 in the controllable limit where m → ∞

with n fixed. Thus all the fields in this family of solutions have parametrically light masses.

Our zeroth-order estimate for the cutoff scale, by contrast, scales as m0.

The second two-parameter family, with the ci as given in (4.3), is similar to the one

above. The fluxes are

(16/b, 0, 0, 0), (b, b, b, b), (2(n + m), (0, 2n), (2m, 2m), 0), (4.11)

and it is easy to check that the moduli

τ0 = −

(

n + m

m

)

±

(

n + 2m

m

)

i, (4.12)

S0 =
1

b2

(

m

2m + n

)3

(8 ± 2i) , (4.13)

U0 =
m

b(2m + n)2
(−4 ± 2i) (4.14)

solve the F -flat equations. As above, the ± in the imaginary parts of these moduli should

be picked to keep the imaginary parts positive; the plus sign should be used when m >

0, n > −2m and the minus sign should be used when m < 0, n > −2m. Again, the same

sign must be picked in all three moduli to give a solution to the equations of motion. These

values for the moduli give string coupling

g =

∣

∣

∣

∣

b2(2m + n)3

2m3

∣

∣

∣

∣

(4.15)

and cosmological constant

Λ = −

∣

∣

∣

∣

3b3(2m + n)6

16m3

∣

∣

∣

∣

. (4.16)

The masses for the moduli in these vacua are again parametrically light. These two families

have identical spectra but are not equivalent under modular transformations.

There are more general choices one can make for the ai than in the two families

discussed explicitly above. For example, any modular transformation S → S + q or U →

U + q will take the fluxes of (4.4), (4.11) to flux sets with more ai nonzero.
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It is particularly interesting to consider the effect of fractional shifts of the form U →

U + (1/q), on these families. These shifts are permissible whenever ci/q is an even integer

for all ci. Every time we can perform such a shift, we get a physically inequivalent theory

with identical spectrum. Each fractional shift yields another infinite family of vacua, with

different values for the flux parameters ai and for the expectation value of ReU . Clearly,

the number of such shifts we can perform is controlled by the factors of the ci fluxes. But

because the ci appear only homogenously in the constraint equations, we are free to scale

them up to arbitrarily large values. As we scale up m and n, we will encounter numbers

that have an increasingly large number of factors, and be able to perform more such shifts.

Thus, as m and n increase, the degeneracy of these vacua increases, becoming infinite in the

m,n → ∞ limit. Degeneracies due to fractional shifts of the axions are in fact a general,

though little-remarked, feature of flux compactifications; the novelty in the present case is

that the tadpole cancellation conditions fail to prevent arbitrarily large degeneracies.

In this section we have derived infinite families of solutions to the four-dimensional field

theory associated with general fluxes. As we have discussed, it is not clear that we can

take even those solutions with small g at face value as solutions of a complete string theory

compactification. It is furthermore entirely possible that even if these solutions are valid for

small fluxes, they may break down in the limit of large NS-NS flux as back reaction effects

become large. Although the average energy density in the internal space due to the fluxes,

given by the cosmological constant, can remain small, as the fluxes become infinite one

might expect that there are regions where the local energy density becomes large enough

to necessitate an accurate treatment of back reaction.

5. Statistics of generic vacua

So far we have described some special classes of solutions to the equations of mo-

tion (3.1), (3.2), (3.3). To investigate the properties of general solutions, we proceed numer-

ically. Numerical computation of solutions for flux vacuum equations of this type requires

three ingredients. First, we must generate a set of (even) fluxes satisfying the constraint

equations (2.14), (2.22). Second, we must numerically solve the equations (3.1), (3.2), (3.3)

for the moduli τ, S, U . Finally, we must impose a gauge-fixing of the modular symme-

tries (A.1)–(A.6) so that we do not count the same “vacuum” twice.

In previous analogous work on the statistics of IIB flux compactifications [28, 36, 37]

only a finite number of solutions were compatible with a fixed tadpole bound L. Thus,

L acted as a natural cutoff, and it was natural to investigate the growth of the number

of solutions as a function of L. In the case we are investigating here, as we have seen in

the previous section, there are infinite families of solutions even at fixed tadpole L = 16.

To proceed numerically we must impose an artificial cutoff on the set of allowed fluxes.

In order to extract physically meaningful results, we then need to consider only those

quantities which approach well-defined limits as the cutoff is taken to infinity.

Generating fluxes satisfying the constraints is straightforward. Fixing an upper bound

N for the fluxes, so that

|ai|, |bi|, |ci| ≤ N , (5.1)
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we can scan through an independent subset of the fluxes and solve for the remaining

dependent fluxes using some of the constraints in time polynomial in N . In general, any

particular algebraic solution to the constraint equations is only valid if certain quantities

are nonvanishing. For example, solving (2.14) for a0 is only possible if b3 6= 0. We have

generated fluxes using several different subsets of the equations, and have confirmed that

the fluxes missed in this process comprise an increasingly small fraction of the set of allowed

fluxes as N is increased.

Numerically solving the equations (3.1), (3.3) is also straightforward in principle.

Again, however, any specific approach to solving the equations assumes certain quanti-

ties to be nonvanishing. We have carried out a systematic search for solutions to the F -flat

equations which stabilize all moduli at tree level for fluxes within the region (5.1). The

stabilization of all moduli is generic, although as we have mentioned in section 3.2 there

are some cases of special interest which do not fall into this category.

As discussed in, for example, [28, 37], there are two ways of imposing gauge-fixing.

On the one hand, we can generate all possible fluxes satisfying the constraints (up to our

cutoff), numerically solve the vacuum equations for all fluxes, and then select only those

solutions which live in a fixed modular region in τ, S, U space. On the other hand, we

can perform the gauge-fixing at the level of the fluxes, choosing only fluxes which satisfy a

particular gauge-fixing condition. In general, if we can gauge-fix at the level of the fluxes,

such that we can efficiently generate only fluxes in the given modular region, our search

will be much more efficient, since otherwise most of our computer time is spent scanning

regions outside the modular domain; this problem becomes worse as the scale of the fluxes

increases and more copies of the modular domain are probed.

The challenge in gauge-fixing at the level of the fluxes is that there is not always a

simple gauge-fixing choice for the fluxes. In the problem we are interested in here, it is

easy to fix the modular transformations S → S + n, U → U + m by imposing conditions

on the fluxes. It is less straightforward, however, to fix the SL(2, Z) symmetry on τ at the

level of the fluxes. We have used the following approach to gauge-fix this symmetry: when

P2(τ) has a pair of complex roots, we can use it to determine a reference value τr which is

the root of P2 in the upper-half complex plane. We then gauge-fix the SL(2, Z) symmetry

by requiring τr to be in the standard fundamental domain F = {τ : |τ | ≥ 1,−1/2 <

Re τ ≤ 1/2, |τ | = 1 ⇒ Re τ ≥ 0}. When P2(τ) has all real roots, but P3(τ) has a pair of

complex roots, we choose τr to be the complex root of P3 with positive imaginary part.

We then again fix the SL(2, Z) symmetry by taking τr ∈ F . The complexity of the roots of

a cubic polynomial depends on a discriminant inequality on the coefficients, much as for a

quadratic polynomial. Thus, the subset of fluxes which cannot be gauge-fixed in this way

represents a fraction of order 1 of the full set of fluxes.

We have generated sets of fluxes up to N = 30 which satisfy the following explicit

modular and sign fixing conditions

• τr ∈ F

• c3 ≥ 0, if c3 = 0 then b3 ≥ 0
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Figure 1: Log-log plot of g, Λ for gauge-fixed fluxes up to N = 20

• b0 ≥ 0, if b0 = 0 then c0 ≥ 0

• (a0, a3) = α(b0, b3) + 3β(c0, c3), where 0 ≤ α, β < 1

Restricting to these fluxes completely fixes the modular freedom, though again some sets

of measure zero are lost. Here we are fixing two choices of sign, both the choice of overall

sign for the fluxes, which relates two different descriptions of the same vacuum, as well

as the global transformation (A.7), which relates two inequivalent but degenerate vacua.

Therefore for each solution we find, there is an additional solution related by the trans-

formation (A.7). We find that the number of gauge-fixed fluxes in the region (5.1) scales

roughly as N4.

We have explicitly solved the equations of motion (3.1), (3.3) for this set of gauge-fixed

fluxes. We find that roughly 20% of all fluxes yield physical supersymmetric solutions. This

fraction did not change significantly as N increased. A plot of the distribution of string

couplings g and cosmological constants Λ is shown in figure 1, for the data up to N = 20.

As can be seen from the figure, large string coupling is correlated with large Λ. This is

not surprising, since g = 1/Im S0 appears as a factor of eK . In addition one may see from

studying the equations of motion that g does not scale with P3, while Λ scales as P 3
3 , so

that rescaling the ci increases the cosmological constant and correspondingly decreases U
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Figure 2: Distribution of values of 1/ImU as a function of maximum flux N for solutions within a

particular range of g and Λ. Successive shaded regions correspond to N = 8, 12, 16, 20 respectively.

without affecting g. This demonstrates that the distribution shown in figure 1 will have a

tail reaching up to −Λ → ∞ at fixed g as N → ∞.

What is perhaps even more interesting is that the overall shape of the distribution

shown in figure 1 does not change appreciably as N increases. As far as we can tell from

our sample, the distribution of vacua in g-Λ space is independent of the scale N of the

fluxes. This implies in particular that unless there is some dramatic qualitative change at

much larger N , there are an infinite number of solutions of the F -flat equations in fixed

finite regions of g-Λ parameter space. Moreover, the vacuum expectation values for the

non-compact scalar fields Im τ and Im U also accumulate according to a distribution whose

shape is apparently independent of N . This leads to an infinite accumulation of solutions

in fixed finite regions of parameter space. In figures 2 and 3 we select one bounded region

in g-Λ space and show how the number of solutions within given ranges of Im τ and Im U

increases with the maximum flux N . The region in g-Λ space we have chosen to illustrate

in the figures is 10 < ln (−Λ) < 15, 1 < ln g < 8. In figure 2 we show the distribution

of Im U for solutions which lie within this bounded region in g-Λ space. In figure 3, we

show the distribution of Im τ for the same set of solutions. The data have been binned into

ranges of useful size for both variables. The gradations of color/grayscale in the graphs

show how the solutions accumulate as a function of maximum flux size N ; we have plotted

the data for N = 8, 12, 16, and 20, with a separate color/shade for each successive value of

N . As is evident in both figures, the distribution of vacua appears to be fairly independent
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Figure 3: Distribution of values of 1/Im τ as a function of maximum flux N for solutions within a

particular range of g and Λ. Successive shaded regions correspond to N = 8, 12, 16, 20 respectively.

of the scale N of the fluxes, and exhibits no strong indication of running to the boundaries

of moduli space. While these “vacua” are completely untrustworthy, lying at large string

coupling, this illustrates that for this model there seem to be an infinite number of distinct

tree-level SUSY solutions for a family of gauged supergravity theories in a finite volume

of moduli space. This is the only example we know of where even in the tree-level low-

energy approximation there is such an infinite family of vacua. If these vacua correspond

to good vacua for a full nonperturbative string theory, it would seem to contradict the

expectation of [23] that there are only a finite number of vacua compatible with any finite

region of physical parameter space. It would be interesting to study these solutions further

to ascertain whether they have a specific physical nonperturbative instability. Another

interesting feature of the distribution of solutions shown in figure 1 is that it does not

contain any solutions with small g,Λ. This stands in contrast to the cases where both

P2(τ) and P3(τ) have three real roots, as we now discuss.

Although the above gauge-fixing procedure breaks down in the case where all roots

of P2(τ) and P3(τ) are real, we have generated a representative sample of fluxes in this

category up to N = 20 and numerically solved the equations of motion. It is then possible

to remove the modular redundancy by choosing the solution for τ to lie within F , and then

imposing the other gauge-fixing conditions. The resulting distribution of solutions is shown

in figure 4. This distribution has the same broad features as that shown in figure 1. In

particular, we still see evidence for an infinite number of distinct solutions in finite regions
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Figure 4: Log-log plot of g, Λ for fluxes where P2, P3 have real roots up to N = 20

of g-Λ-space. The only major difference between this case and the complex root case in

figure 1 is that here, much smaller values of g and Λ appear. Indeed, many of the points

in figure 4 are members of the controllable families discussed in the previous section. It

would be nice to have a clearer quantitative understanding of why small values of g and Λ

seem so much more difficult to realize in the case where P2(τ), P3(τ) have complex roots.

At this point it is perhaps worthwhile to reiterate that the results in this section, for the

fraction of supersymmetry-preserving flux sets and the relative number of supersymmetric

solutions in different regions of parameter space, are independent of N for large enough N ,

and are therefore apparently well-defined as the cutoff on the maximum flux is removed.

6. Conclusions

The main goal of this paper has been to investigate supersymmetric vacua of the N = 1

effective theory developed in [9]. We find that generic supersymmetric solutions have the

following properties: all moduli are stabilized at tree level; the solutions are not gauge-

equivalent to geometric compactifications in any duality frame; the string coupling and four-

dimensional cosmological constant are not particularly small; and there appear to be an

infinite number of solutions in finite regions of parameter space without vanishing or infinite

limits. In addition, we have found infinite families of vacua which have parametrically
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controllable string coupling and mass scales, though we do not have any reason to believe

that the α′ expansion is under control for these vacua..

The apparently infinite number of solutions in bounded regions of parameter space

is perhaps a bit surprising, and seems to conflict with the intuition underlying recent

speculations regarding finiteness of the landscape of string vacua [23, 38]. Indeed, if there

are an infinite number of valid string vacua in a finite range of parameter space in effective

field theory, with sufficiently small (or negative) cosmological constants, it is difficult to

avoid an infinite transition rate into those vacua via vacuum decay processes (though

not impossible, if for example increasing a parameter such as a flux sufficiently quickly

increases the height or width of the potential barrier separating these vacua from the

physical vacuum). It is therefore worthwhile to discuss a number of possible reasons why

the solutions we have found here may not represent true supersymmetric string vacua.

To begin with, as we have discussed, it is quite possible that the four-dimensional effec-

tive field theories studied here simply cannot be lifted to a full string background, even with

the inclusion of other modes with masses comparable to those of the moduli. Even if these

field theories can be lifted to geometric or nongeometric backgrounds, given the difficulty

of achieving modular invariance in nongeometric asymmetric orbifold constructions [20, 39]

it is conceivable that the class of generalized flux compactifications we consider here must

obey unexpected constraints at the one-loop level which would eliminate many or all of the

tree-level solutions given here. It is also possible that we have missed a tree-level constraint

on the allowed fluxes, although it is somewhat difficult to see how further constraints might

arise. Actually constructing string backgrounds which incorporate nongeometric fluxes is

probably the most promising way of analyzing this set of possibilities further, and we leave

this as an open problem.

Another possibility is that we have misidentified the modular redundancy of the theory,

and that many of the distinct solutions which we find should in fact be considered to be

equivalent descriptions of the same solution. We can conceptually separate two different

ways in which the number of vacua becomes large: first, the fractional axionic shifts which

give potentially large numbers of degenerate vacua with identical g and Λ, and second, the

increasing density of distinct values of g and Λ within a finite region as the maximum flux

N is increased. There are no known symmetries which would identify these vacua, and our

numerical work shows no evidence of extra redundancies associated with unknown modular

equivalences which would reduce the number of inequivalent vacua to a finite number. It

is conceivable, however, that such a symmetry exists, which would reduce the number of

physically inequivalent solutions.

Yet another possibility is the destabilization of the tree-level solutions by the inclusion

of either α′ effects or neglected momentum or winding modes. If our solutions do lift to full

string backgrounds, we expect in general that α′ effects will be significant. In conventional

flux compactifications, one can often work in a large volume limit, where α′ corrections are

highly suppressed; we are unable to do that here. Indeed, in simple examples nongeometric

fluxes typically stabilize length scales of the compactification manifold at the string scale

by relating radii to their duals under monodromy, so we expect α′ corrections to generically

be important. Finally, it is possible that we should not allow the NS-NS fluxes to become

– 21 –



J
H
E
P
0
2
(
2
0
0
7
)
0
9
5

arbitrarily large, as such a flux configuration might lead to large local backreaction, as we

have discussed briefly at the end of section 4.

Despite all these possible problems in extending the solutions we have found to full-

fledged string theory solutions, the generalized fluxes appearing in the superpotential seem

to capture essentially topological features of the string compactification, and it seems to

us likely that the vacua found here do capture the main features of a new class of string

compactifications. Even if these four-dimensional effective theories do not include all the

physics of the full string theory, they may point the way to a new and interesting class of

constructions of string vacua. Certainly, the question of which four-dimensional effective

supergravity theories can be lifted to complete string theories is a very important one which

deserves more attention at this time. Whether this question is best resolved by a top-

down (landscape [40]) approach of attempting to characterize the most general structure

of string theory compactifications, or by a bottom-up (swampland [24, 41]) approach of

understanding which four-dimensional theories have a good UV completion remains to be

seen. In any case, a full characterization of the space of string vacua which might be

compared productively with experiment requires a resolution of this question. It is our

hope that the solutions and caveats which we have developed here may provide a useful

set of test cases to better understand the boundaries of the landscape.
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A. Modular transformations

Here we give the transformation properties of the fluxes under the modular transformations

described in section 3.

First, consider the shift of the axiodilaton S → S + n. This shift of the modulus is

accompanied by a shift of the flux parameters,

ai → ai + nbi, (A.1)

with bi, ci invariant, leaving the superpotential invariant under the shift.
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Second, consider the shift U → U + n. Under this transformation the fluxes transform

as

a0 → a0 − 3nc0

a1 → a1 + n(2c1 − c̃1) (A.2)

a2 → a2 + n(2c2 − c̃2)

a3 → a3 − 3nc3,

with bi, ci invariant.

Finally, consider the shift τ → τ + n, which is a geometric transformation in type IIB.

The transformation laws for the ai, bi are, as usual,

a0 → a0 + 3a1n + 3a2n
2 + a3n

3

a1 → a1 + 2na2 + n2a3 (A.3)

a2 → a2 + na3

a3 → a3,

while the transformations of the ci are slightly more involved:

c0 → c0 − 2nc1 + nc̃1 − 2n2c2 + n2c̃2 + n3c3

c1 → c1 − nc̃2 + nc2 − n2c3

c̃1 → c̃1 − 2nc2 + n2c3 (A.4)

c2 → c2 − nc3

c̃2 → c̃2 + nc3

c3 → c3.

The separate transformations of c1 and c̃1 can be deduced most easily from IIB, where the

shift τ → τ +n is a large diffeomorphism and the ci are all given by Qab
c on different cycles.

By taking Q to transform as a mixed tensor under diffeomorphisms one may obtain the

transformation rules above for the integrated fluxes.

There is also an inversion symmetry τ → −1/τ , under which

a0 → a3

a1 → −a2 (A.5)

a2 → a1

a3 → −a0

and similarly for the bi; meanwhile,

c0 → c3

c1 → −c2 (A.6)

c2 → c1

c3 → −c0.
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Under this transformation W → −(1/τ3)W , which combined with the change in the Kähler

potential (2.12) leaves the scalar potential invariant.

The last factor in the modular group, as described in section 3, is a Z2 transformation

which flips the signs of all fluxes, leaving the moduli invariant.

One may check that all the constraints are preserved under the above modular trans-

formations.

In section 5 we fix in addition the global transformation which takes τ, S, U →

−τ̄ ,−S̄,−Ū . Under this transformation the fluxes which multiply odd powers of the moduli

in the superpotential switch signs,

a1, a3, b0, b2, c0, c2, c̃2 → −a1,−a3,−b0,−b2,−c0,−c2,−c̃2 (A.7)

so that W → W̄ .
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